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ELECTROHYDRODYNAMICS OF TWO-PHASE MEDIA WITH PARTICLES 
OF THE DISPERSED PHASE CHARGED BY AN ELECTRIC FIELD* 

N.L. VASIL'EVA and L.T. CHERNYI 

A polydisperse two-phase system consisting of solid or liquid particles of the dis- 
persed phase and gas with bipolar charge in an electric field is considered.Volume 
concentration of the dispersed phase is assumed low. Charging of particles by the 
capture of ions from the gas under the action of electric field is investigated. A 
model of such medium is constructed using concepts of continuous medium mechanics 
/l/ with allowance for variation of the charge of moving particles. Variousmethods 
are proposed for simplifying the equations of particles charging and motion. It is 
shown that, unlike in electrohydrodynamics of multiphase media without charging 
particles /2/, the mobility of particles moving under the effect of an electric 
field can change. Relaxation of particle charge and velocity behind a shock wave 
is investigated. 

1. Charging of dispersed particles in a gas with bipolar charge. In two-phase 
media consisting of dispersed solidorliquid particles and charge gas, the particlesmaybecome 
charged by collecting ions from the surrounding gas. We begin the investigation of this pheno- 
menon with the case of low concentration of dispersed particles by considering the chargingof 
a spherical particle of radius a in gas with positive and negative ions whose concentrationis 
also assumed low. The undistrubed (by the particle) velocity v of gas, the ion electric 
charge density q+ , and the electric field intensity E axe assumed to be fairly slow varying 
functions of coordinates and time. We shall consider the relative motion of gas in a system 
of coordinates attached to the particle on the assumption of validity of the neglect in the 
Navier-Stokes equations of the following terms and quantities: the inertial terms and the 
Coulomb electric force, as small in comparison with the viscosity term: the ion diffusion at 
distances of order a as small in comparison with convective transport and drift due to the 
electric field effect; variation of the electric field intensity due to perturbation in the 
particle neighborhood, as small in comparison with its unperturbed value, and the conductivity 
and viscosity of gas, as small in comparison with respective particle parameters. Theparticle 
velocity relative to gas u and the unperturbed electric field intensity ti are assumed in the 
considered case to be paralleltothe same straight line. 

Formulas for electric fluxes of positive and negative ions reaching the particle can be 
represented for various velocities and charges in the form /3,4/ 

~~--(V"i~i)J,*(u*,Q*), Q"=31EJa9, zI=(4nb,q*t)-' 
u* = u/(b,‘I El), (1* =I Q/Q’, b,"= Q"/(Gnr*u) 

(1.1) 

(1.2) 

where Q and Q" are the particle charge and its characteristic value, respectively, %+(r._) are 
characteristic timesofparticle charge variation caused by the capture of positive (negative) 
ions, b," is the characteristic value of particle mobility, m is the projection of particle 
velocity on the direction of E,u*,Q* are dimensionless values of u,Q,b,>O and b_<O are 
the mobilities of positive and negative ions, respectively. The gas pennittivity is assumed 
equal unity, and the super- and subscripts denote J, and J_, respectively. Formulas (1.1) 
and (1.2) are obtained by analyzing ion streamlines at low Reynolds numbers He, = 2ap 1 U I/P< 
1 (p and p are the density and dynamic viscosity of gas) in a coordinate system attached to the 
particle, 

The equations that define the charging and motion of the particle at He,< 1 in dimen- 
sionless variables Q*, u* axe of the form 
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dQ*idt z J+*/T+ -I- J-*/T_, du*/dt = (Q* - u*)/G (1.3) 

where m is the mass of the particle, t is the time, and t, = mi(6np)is the characteristic time 

of particle velocity change. The unperturbed values of v, q*, E are assumed to be fairly 
slow varying functions of coordinates and time. 

We define the particle mobility b, by the equality b,=Q/(khp~). For particles of radius 

s< iO+rn we have the inequality 1 b, I< / 6, 1 which is satisfied, even when the quantity1 (J I/a" 
reaches the breakdown value of voltage of the electric field in air. Hence, when u* 2 0+/b," >, 

0 and u* ,( b-lb,” < 0 , the termQ*is the second of Eqs.(1.3) can be neglected, as small in 

comparison with u* 
10*/u* 1 ,( 1 Qb,“l(V”b,) 1 = I b,/b, 1 < 1 

As the result, system (1.3) splits in the indicated region ofu*values. 

The qualitative behavior of phase trajectories of system (1.3) is shown in Fig.1. Motion 

along them, indicated by arrows, corresponds to increasing time. The derivatives dQ*ldu* and 

,@*/& vanish along the following three straight-line segments: 

(1.4) 

(1.5) 

which simultaneously are sections of phase trajectories. Parameters Qs*, Q** obviously sat- 

isfy the inequalities IQs* 1 <I, 0 sQ** 5 &tl, On the straight line Q* = u* (representedin 
Fig.1 by dashes) the derivative dQ*idu* becomes infinite along phase trajectories, while the 

derivative du*idt vanishes. System (1.3) has a singular point Sat coordinates U* = Q* ; Qs* 
in the form of a steady node. That point is approached bya trajectories along paths for 

which dQ*!du* = [I - ~,~/l/t+t_l s k or dQ*ldu* = 0. If Tf, > 1/T+T_, only two trajectories approach 

point S along the first of these paths, while along the other it is approached by the infinite - 
number of remaining trajectories. However, when t,,< I/t+r_, the contrary is true. This case 

is represented in Fig.1, where the thin straight line corresponds to (Q* - Qs*) = k(u* - us*)and 
is tangent to an infinite number of phase trajectories. The singular point Sevidently repre- 

sents a stable steady state of the particle for which Qs = Q"Qs*, U, = bp" IE 1. Qs* b,, I E I. 

If at the initial instant of time Q,u differed from their steady state values, they relax 

in the course of time to those values. The 

relaxation time of particle chargeisoforder 
1na.k it+, -c_)and of its velocity of order ~1,. 

Note that in the steady state the sum of 

friction and electrical forces acting on the 

particle is zero. Hence the conditionstated 

above that vectors of particle velocity rela- 

tive to gas and of the electric field inten- 

sity must be parallel, is alway satisfied. 

Fig.1 

three 

We divide the phase plane (Q*, u*) in 

regions: u* < b_lb,,“, LI/+” < u* < o+lb,j , 
b+lbp” < u*. Functions J+* (Q*,u*) defined by 

equalities (1.2) are independent of u*inside 

each of these regions, but change when pass- 

ing from one region to another. This enables 

us to integrate system (1.3) and obtain, for 

the determination of its phase trajectories, 

the following relations: 

u* = f (Q*) (\ [f (Q*) [+ J+* i- $ I_*) ]-* Q*dQ* + C\ 

,f(Q*)=exp[-1 ~$J+*t-$J_*~-'dQ*] 
(1.6) 

(1.7) 

Inside each of these regions the quantity C is constant along phase trajectories (but, 

obviously, is not the same on different trajectories). At transition from one region to 

another C changes, and is determined by the condition of continuity of phase trajectories. 

Functions J+* (Q*) and f(Q*) also change at that stage. The indefinite integrals in equalities 
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(1.6) and (1.7) denote any fixed antiderivatives of integrands when ---Do <Q* < i- m, Function 
f(@)is defined in terms ofelementary functionsof different form in each of the indicated 
regions. 

2. Equations of electrohydrodynamics of two-phase media. Consideratwo-phase 
polydisperse medium consisting of a gas with bipolar charge and dispersed spherical particles 
in an electric field. We assume the dispersed phase volume concentration to be small, and 
.viscosity and the thermal conductivity of gas as immaterial in the investigation of its aver-- 
aged motion. The averaged motions of gas, ions and particles can be defined on these assump- 

tions in terms of continuous medium mechanics by equations of the form 

ap,@t+ divpv= 0, &z,!at + div npvp = 0 

8Qiat +- (vPP) Q = J, + J_, 8q+/8t + div j, = - 
s 

J*n,da 

apviat + div PVV = - F’P -i- (q+ -I- g_) E - 5 n,fda 
m (8V,lat $ (Vpv) Vp) = f _L @, j* = Q&V T &_@ 

8prJ’lat -t div pc,T v = - p div v -{- (b+g+ + b-p_) lP - 

in,[f(v,--v)f&']da, p=pHT 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

mp [(am) cpT, -i- (vpV) CpT,] = w 

divE=4n(g++q_+[n,Qda), rotE=O 
(2.6) 

(2.7) 

where ~),v,p, 'f are the density, velocity, pressure, and temperature of gas, H isthegasconst- 
ant, G is the specific heat at constant volume of gas, r+(a) da is the concentration of dis- 
persed particles of radius a from the interval ]a,~ i-da], VP(a), TP(a), Q(U), m = 4xp,"a3/3are the 
velocity, temperature, charge, and mass of dispersed particles of radius a, ppo,cpare the den- 
sity and specific heat of particle material, Q+, ir are densities of the electric charge and 
current of positive and negative ions, respectively, s*(a) are the electric currents of posi- 
tive and negative ions reaching a particle of radius a,r(a) is the resistance offeredbygasto 
the motion of particle of radius a, IV(e) is the heat flux from gas to the particle of radius 

a, andd is the electric field intensity. The above parameters represent values averaged 
over physically infinitely small volumes of a reasonably large number of dispersed particles. 

The system of Eqs.(2.1)- (2.7) is presented in the form of electrohydrodynamic approxima- 
tion /5/ without allowance for ionization and recombination processes, 

The first of Eqs.(2.1) is the equation of continuity of the gas phase density and the 
second represents in differential form the law of conservation of the number of particles of 
each radius. The first of Eqs.(2.2) is the equation of charge variationofdispersedparticles. 
In the case in which at every point of space vectors ~=YYP-v and E are collinear, i.e.paral- 
lel or directed toward each other, formulas (1.1) and (1.2) can be used for expressing J* ap- 
pearing in the right-hand side of the first of Eqs. (2.2). Parameters urvp--,E, q&are to be 
understood as the respective mean characteristics of the considered pal-ydisperse medium defin- 
ed at the given point. The collinearity condition for vectors u and E is always satisfied in 
the practically important case in which it is possible to neglect the effect the inertia of 
dispersed particles on their motion. The above condition is also valid in one-dimensional 
flows.The second of Eqs.12.2) defines the variation of electric charge density of positiveand 
negative ions. Equation (2.3) is the equation of motion of gas. The first of Eqs.(2.4) de- 
fines the motion of dispersed particles and the second (Ohm's law) is a simplified equationof 
motion of ions. Concentration of ions and dispersed particles is assumed low, so that the 
force of their interaction can be neglected, as small in comparison with that of interaction 
with gas. Equation (2.5) defines the influx of heat to the gas and ion mixture. The gas and 
ions are assumed to be at the same temperature. Equation (2.6) defines the temperature varia- 
tion of dispersed particles induced by the heat exchange with gas. In the last two equations 
the energy exchange between ions and particles was assumed small and has been neglected. Equa- 
tions (2.7) define the electric field. 

The motion of a two-phase monodisperse medium, consisting of charged gas and dispersed 
particles of uniform size, in an electric field, can be defined by the system of Eqs.(2.1)- 
(2.7) in which the second of Eqs.(2.2) and in Eqs.(2.3), (2.5) and (2.7) integration with re- 
spect to particle radius are omitted. Parameter np is to be taken as the concentration of 
particles. 

TO close the system of equations it is necessary to specify the expressions for friction 
force f and the heat flux W. They can be represented in the form /6/ 



86 N.L. Vasil'eva and L.T. Chernyi 

I = li$TC, (h,) nq, 1 v -- \-,’ 1 (v - V&J, He,, s “a(, 1 v - v,, //p (2.8) 

II; = "lt NII, (lte,,, I%)ax (r - 2‘J. I'r .: uc,:x (2.9) 

where C,, XII,, Hc, are, respectively, the drag coefficient, the Nusselt number, andtheReynolds 
number of the dispersed particle, PI is the Prandtl number of gas, and ~1 and x are, respectiv- 
ely, the coefficient of dynamic viscosity and thermal conductivity of gas. For functions 
(1, (WC,,). ~~~~~ (I{(,,,. PI,) we have valid the following formulas /6,7/: 

of which (2.10) is theoretical and (2.11) experimental. 

3. Simplification of derived equations. The system of Eqs.(2.1)- (2.7) is fairly 
complex. Let us consider the possibility of replacing the complete equation of motion (the 
first of Eqs.12.4)) of particles by Ohm's law for particles, with their temperature assumed 
equal to that of gas. We denote by 7, tn'((i~l}la) and T the characteristic relaxation time of 
the dispersed particle velocity and the characteristic time of the problem, respectively,i.e. 
the minimal characteristic time of variation of defining parameters. The ratio r,/z : rn/((inyclz) -- 
St determines the effect of inertia on the motion of dispersed particles, and is called the 
Stokes number. If it is small, we can neglect the inertia terms in the equation of motion of 
dispersed particles. With allowance for equalities (2.8), (2.10), and (2.11) that equation 
assumes the form 

which is obtained by eliminating first force f from Eq.(2.3) of gas motion,usingformula (2.4). 
In conformity with equality (3-l), velocity U sz Vy - v of dispersed particles (of any 

radius (I) relative to the gas and the electric field intensity E are everywhere directedalong 
one straight line.. Hence formulas (1.1) can be used for defining currents I* . Note thatthe 
particle mobility Flp in the simplified equation (3.1) of particle motion, unlike in the con- 
ventional electrohydrodynamics of multiphase media /2/ (without allowance for the charging of 
dispersed phase particles), is not a constant coefficient. In conformity with the second of 
equalities (3.1) it depends on the particle charge whose variation is defined by the differen- 
tial equation (2.2). Below, we call the approximation in which the equation of motion of 
particles is of the form (3.1) as the diffusion approximation. 

It follows from Eqs.(2.6) and (2.9) that the characteristic relaxation time of particle 
temperature is I,~~,c~ (2~ NII,UX)-TTT. If TT'T<~. it is possible to use the simplified formula 
r_ T, ~~ fJ instead of Eqs.(2.6) and (2.9) for determining the temperature of particles. It 
is then necessary to eliminate, as a preliminary, the heat flux Wfrom Eq.(2.51 of heat flow 
to the gas, using equality (2.6). 

Let us indicate the conditions under which Eq.(2.2) of particle charging can be replaced 
by an algebraic relation. We introduced in Sect.1 the characteristic times a~==(/(sb+([+)-' of 
particle charge variation due to capture of positive and negative ions. The ratio of the 
characteristic values of terms in the left-hand side of the first of Eqs.i2.2) to that of ion 
currents J, reaching a particle does not exceed T&/T in the order of magnitude. When this 
ratio is small, the terms in the left-hand side of the first of Eqs.(2.2) can be neglected, 
and the equation then reduces to the form 

J, f~ .I_ -~- 0 (3.2) 

We denote by 7*+1 the characteristic times of variation of positiveandnegativeion charge 
density due to the deposition of ions on particles. Obviously 

From the condition t+<r and definition of the problem characteristic time 7 follows that 

r* < T < T*'. Substituting into it the expressions for T+: r+'. we obtain 
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Hence in the case when the algebraic equation (3.2) is used instead of the differential 
equation (the first of Eqs.(2.2)) of particle charging, the charge density of positive and 
negative ions is considerably higher than the characteristic mean charge density of dispersed 
particles. Hence the equations of ion electric charge (the second of Eqs.f2.2)) remain valid 
also when the simplified equation (3.2) is used for defining particle charging. Substituting 
into it expressions (1.1) for currents .J+, we obtain for the dependence ofdispersedparticles 
charge on variables II -3 vP - v,E,q* the formula 

Q=9”QsL3,Efa’ 1/6,q,--l/h_pl 
vb+q+ I I/b_q ’ 

b_E’<(n.E) <b+F (3.3) 
- 

Since u- b,E. I bpl < I b, I, b 20, the first of equalities (3.3) holds in the case of 
diffusion approximation. 

4. Shock waves. Consider steady electrohydrodynsmic flaws with shock waves of a two- 
phase medium, when the charge of dispersed particles can vary owing to ion deposition on them. 
Since the density of gas is considerably lower than that of particles material, the parameters 

np, VP? TP of particles in a strong shock wave can be assumed continuous /8/. Jumps of the 
electric charye of particles and of densities of ion electric currents satisfy the relations 
{Q} _: O+ + o_, {j,..v = - l u’+np (VP+) da, where {A} = A,- A,, subscripts 1 and 2 denote values 
of parameter.4 ahead and behind the shock wave tront, respectively, v is the vector of the 
normal to the shock wave, and h)+ (a)is the change of electric charge of particle of radius R 
at its intersection of the shock wave as the result of capture by the particle of positive 
(a+) or negative (m-) ions concentrated in the shock wave. If the surface charge s+(e_) of posi- 
tive (negative) ions in the shock wave is zero, then O, = O(o_ = 0). The remaining relations at 
the shock wave are the same as in electrohydrodynamics of single-phase media .A/, with the 
surface density of particles in the shock wave equal zero. The quantities o+ must be speci- 
fied on the basis of analysis of particle interaction with ions that constitute the surface 
charge u?. 

Below, we consider the case in which the effect of particles on the motion of gas, ions, 
and electric field distribution can be neglected, the flow is one-dimensional, the shock wave 
is plane, vectors ~,v,~, E are orthogonal to it, and (\-.\.~,l> 0, (0) == 0. The inequalitiesrr Lfu,,>> 
Tusr>)r*where Lis the minimal characteristic length of variation of parameters "7 E,q+, are 
assumed to be satisfied ahead and behind the shock wave front. This enables us to use the 
simplifed equations (3.1) and (3.3) for the determination of particles velocity v!, andcharge 
Q ahead and at some distance behind the shock wave. The relaxtion zone of thickness Z-Z~~IIGIX 
(%,~.&:c/~ is immediately behind the shock wave. In that zone parameters vr3.Q change from v~,t, 
'?I to v,.~, ~7~ determined, respectively, by formulas (3.1) and (3.3) for v==v,,E==E,,~~+-- '1+1 and 
v-= '2, E = ET, 9+ -- 9+ (since 14 I., parameters ~,E,Q* inside that zone can be considered as con- 
stants at their values directly behind the shock wave). 
0.v~ is determined by the equations 

When me,, <I), the parameter change 

~'i'x aV:dz 2: J, + J_, r,,,d~r’as = - Cink‘au pi QE,, u f L‘,,z - VXd (4.1) 

The axis r of this coordinate system is directed along vector E,. 
We pass in Eqs.cB.1) to dimensionless variables 

Q* = Q;v", U* = u;(b,PE,} (Q” s 3&S, b,,” = Q?(Gny)) 

In the plane a*,~* the phase trajectories coincide with the trajectories of system (1.3). 
Hence all findings of Sect.1 (Fig.1) relative to the behavior of the latter are also valid for 
the system of Eqs.(b.l) that define the charge and velocity relaxation of particles behindthe 
shock wave in a gas with bipolar charge. 

5. Weak discontinuities. Consider thesurfacesof a weak discontinuity in the electro- 
hydrodynamics of two-phase monodisperse media, when the dispersing phase is an inviscid non- 
heat-conducting gas with bipolar charge. We direct the r axis along the normal to the discon- 
tinuity surface and denote by c the discontinuity propagation velocity relative to gas. Let 
the continuity of derivatives with respect to 5 and t in Eqs.(2.1)- (2.7) be disrupted at a 
weak discontinuity. Their jumps {fY/at}, {a/&} are 
relation {a/at} = - (ur $ a) (d/&J. 

obviously linked among themselves by the 
Using a reasoning similar to that in conventional electro- 

hydrodynamics /5/, we obtain 
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for the propagation velocities of weak discontinuity surfaces, and the relations for jumps of 
derivatives on them. 

Velocities Cl,. . .,Cg are the same as in electrohydrodynamics of homogeneous media /5/. On 
surfaces of weak discontinuities propagating at these velocities the derivatives of the dis- 

persed phase parameters n, Q, T,, vp are continuous, while those of remaining parameters are 
interconnected by conventional electrohydrodynamic relations /5/. The surface of a weak dis- 
continuity propagating at velocity CE obviously moves together with the dispersed particles. 
Along it we have arbitrary jumps {dn,/&r), {aQ/as}, {~T,l&} , while the derivatives of remaining 

parameters, including particle velocity VP, are continuous. 

If formula (3.1) is used as the equation of motion of particles, then with Rep4 1 wehave 

re= +=b&. In that case the jump of particle concentration derivative on the surfaces of 

weak discontinuities propagating at velocities c*,~ is nonzero. (arl,/aX) = ?l,, (c - bpE,)-’ {dL./&} -+ ,), 

while on the weak discontinuity surface for which c= ~6 the derivatives of particle charge 0 

are continuous. The remaining formulas for jumps of derivatives remain the same. 

6. Damping of small perturbations in the dispersed phase. Consider the propa- 

gation of small perturbations of dispersed phase parameters in a monodisperse medium consist- 

ing of charged gas and liquid or solid particles, when the effect of the latter on the motion 

of gas and ions, and also, on the electric field distribution can be neglected (the respective 

"interaction" parameters are small). We assume the gas velocity and temperature, density of 

ion electric charge, and the electric field intensity to be known functions of coordinates and 

time. The dispersed phase flow is then defined by the second of Eqs.(Z.l), the first of Eqs. 

(2.2) and (2.4), and Eq.(2.6). Let us assume that the quantities J*, f, W, which define in 

these equations the interaction of phases, are determined by the formulas 

J* 
31Ela’=+4r 13 I*( -“)‘a 31Ela" f = 8mpa (V - vp), W = 4nxa (T - TP) 

Let A be any of the dispersed phase parameters n,, vpr Q, Tp which we represent in the form 
A =A".-A' , where A"represents the unperturbed parameter and A'a small perturbation (1 A’ I< 
IA” I). We shall consider short-wave perturbations for which the characteristic length h ofA' 

variation is considerably smaller than the characteristic 1engthL of variationofthe unper- 

turbed value A". Then, using the above equations for np, vpr Q, T,, neglecting smalls of order 

A”,UL, and taking into account that these equations must be also satisfied for the unper- 

turbed values ny', vp",p. T,’ , we obtain the relations 

Dn,’ -I- n,‘Fv,’ = 0, Dv,’ j- T;‘v~’ - (E,‘m) Q’= 0 (6.2) 

UT, + +T; = 0, DQ’ k 7y1Q = 0, D SE a/at + vpo. C 

We seek a solution of this system of the form A' ~~ He IA* exp (i (kx - @t))l, where A*is a 

slowly varying function of coordinates and time (Lh-> l,ro>l, and L,r are the characteristic 

length and the time of il*variation). Substitution of this expression for functions A' into 

system (5.2), with the derivatives ofil*neglected, yields for the determination of amplitudes 

of A*a system of homogeneous linear algebraic equations. Equating to zero its determinant we 

obtain the dispersion equation 

s1 (S2 i/T,)” (Q ~. i/~~) (Q i/7,) ~-: 0, 61 = w - (vp”.k) 
whose solution is of the form 62, = 0,S2,a,,, = -ii/~~,Q 5 m1 - ~/TT, % L - ihQ. 

Thus in the considered here case there exist six types of small harmonic perturbations. 

Since &a/dk=_v ,",a11 of them propagate at the unperturbed particle velocity vPo . Perturba- 

tion of the first type, for which $'f 8, vp' = T,’ : Q’-U , does not dampen or increase. 

Perturbations of the second, third, and fourth types, for which n,'# 0, vp'#O, T,’ == Q’ :: 0, 

decrease with decrement l/r,. Perturbation of the fifth type, for which T,' + 0, np' --: v,,' =: 
Q' y 0 , decrease with decrement I,tr. Finally, perturbations of the sixth type, for which 

np' # 0, cp' # 0, Q' # 0, T,' = 0, decrease with decrement 11~~. If Q" : 3 IE 1 azQs*. where Qs* 
is determined by the equality (1.41, then from the formula for TQ we have T(~ = r/T+y. 

The authors thank L.I. Sedov and V-V. Gogosov for discussion of this paper. 
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